大学职业资格刷题搜题APP
下载APP
课程
题库模板
WORD模板下载
EXCEL模板下载
题库创建教程
创建题库
登录
logo - 刷刷题
创建自己的小题库
搜索
【单选题】

TEXT D
Early in the film "A Beautiful Mind," the mathematician John Nash is seen sitting in a Princeton court- yard, hunched over a playing board covered with small black and white pieces that look like pebbles. He was playing Go(围棋), an ancient Asian . Frustration at losing that inspired the real Nash to pursue the mathematics of theory, research for which he ually was awarded a Nobel Prize.
In recent years, computer experts, particularly those specializing in artificial intelce, have felt the same fascination and frustration. Programming other board s has been a relative snap. Even chess has succumbed to the power of the processor. Five years ago, a chess-playing computer called "Deep Blue" not only beat but thoroughly humbled Garry Kasparov, the world champion at that time. That is because chess, while tithe complex, can be reduced to a matter of brute force computation. Go is different. Deceptively easy to learn, either for a computer or a human, it is a of such depth and complexity that it can take years for a person to become a strong player. Today, no computer has been able to achieve a skill level beyond that of the casual player.
The is played on a board divided into a grid of 19 horizontal and 19 vertical lines. Black and white pieces called stones are placed one at a time on the grid’ s intersections. The object is to acquire and defend territory by surrounding it with stones. Programmers working on Go see it as more accurate than chess in reflecting the ways the human mind works. The challenge of proroguing a computer to mimic that process goes to the core of artificial intelce, which involves the study of learning and decision-, strategic think- Lug, knowledge representation, pattern recognition and perhaps most intriguingly, intuition.
Along with intuition, pattern recognition is a large part of the . While computers are good at process- ing numbers, people are naturally good at matching patterns. Humans can recognize an acquaintance at a glance, even from the back.
Daniel Bump, a mathematics professor at Stanford, works on a program called GNU Go in his spare time.
"You can very quickly look at a chess and see if there’s some major issue," he said. But to make a decision in Go, he said, players must learn to combine their pattern-matching abilities with the logic and knowledge they have accrued in years of playing.
One measure of the challenge the poses is the performance of Go computer programs. The past five years have yielded incremental improvements but no breakthroughs, said David Fotland, a programmer and chip designer in San Jose, California, who created and sells The Many Faces of Go, one of the few commercial Go programs.
Part of the challenge has to do with processing speed. The typical chess program can evaluate about 500,000 positions in a second, and Deep Blue was able to evaluate some 200 million positions in a second. By mitigate, most Go programs can evaluate only a couple of dozen positions each second, said Anders Kiem if, who wrote a program called, Smart Go.
In the course of a chess , a player has an average of 25 to 35 moves available. In Go, on the other hand, a player can choose from an average of 240 moves. A Go-playing computer would need about 30,000 years to look as far ahead as Deep Blue can with chess in three seconds, said Michael Reiss, a computer scientist in London. But the obstacles go deeper than processing power. Not only do Go programs have trouble evaluafing positions quickly; they have trouble evaluating them correctly. Nonetheless, the allure of computer Go increases as the difficulties it poses encourages programmers to advance basic work in artificial intelce.
Reiss, an expert in neural networks, compared a human being’s ability to recognize a strong or weak position in Go with the ability to distinguish between an image of a chair and one of a bicycle. Both tasks, he said are hugely difficult for a computer. For that reason, Fotland said, "writing a strong Go program will teach us more about computers think like people than writing a strong chess program."
Which of the following statements is the main idea of the passage

A.
Go is a more complex than chess.
B.
Go reflects the way human beings think.
C.
Go players are likely to feel frustrated.
D.
Go poses a challenge to artificial intelce.
题目标签:围棋
手机使用
分享
复制链接
新浪微博
分享QQ
微信扫一扫
微信内点击右上角“…”即可分享
反馈
收藏 - 刷刷题收藏
举报
刷刷题
参考答案:
相关题目:
刷刷题-刷题-导入试题 - 刷刷题
参考解析:
题目纠错 0
发布
刷刷题-刷题-导入试题 - 刷刷题刷刷题-刷题-导入试题 - 刷刷题刷刷题-刷题-导入试题 - 刷刷题
刷刷题-刷题-导入试题 - 刷刷题
刷刷题-刷题-导入试题 - 刷刷题
刷刷题-单词鸭